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Set Integral Equations in Metric Spaces

Ioana Tişe

Abstract. Let Pcp,cv(Rn) be the family of all nonempty compact, con-
vex subsets of Rn.

We consider the following set integral equations:

X(t) =

Z b

a

K(t, s, X(s)) d s + X0(1)

X(t) =

Z t

a

K(t, s, X(s)) d s + X0,(2)

where K : [a, b]× [a, b]×Pcp,cv(Rn)→ Pcp,cv(Rn) and X0 ∈ Pcp,cv(Rn).
The purpose of the paper is to study the existence and data depen-

dence of the solutions of the set integral equations (1) and (2), by using
a fixed point approach. Our results generalize and extend the results
given in [2]. For other similar results see [3] and [4].

1. Introduction

Let Rn be the real n-dimensional Euclidian space and Pcp,cv(Rn) be the
family of all nonempty compact, convex subset of Rn endowed with the
Pompeiu-Hausdorff metric H. It is well-known that (Pcp,cv(Rn),H) is a
complete metric space.

We consider the following set integral equations:

X(t) =
∫ b

a
K(t, s, X(s)) d s + X0,(1)

X(t) =
∫ t

a
K(t, s, X(s)) d s + X0,(2)

where K : [a, b]× [a, b]× Pcp,cv(Rn) → Pcp,cv(Rn).
A solution of (1) or (2) means a continuous function X : [a, b] → Pcp,cv(Rn)

which satisfies (1) respectively (2) for each t ∈ [a, b].
The purpose of the article is to study the existence and data dependence

of the solutions of the equation (1) and (2). The approach is based on the
well-known Banach-Caccioppoli contraction principle. Our results generalize
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and extend the results given in [2]. For other similar results see [3], [5] and
[4].

The paper is organized as follows. Next section, Preliminaries, contains
some basic notations and notions used through the paper. Third section
presents existence and the data dependence results of the solution for the
equations (1) and (2).

2. Preliminaries

The aim of this section is to present some notions and symbols used in
the paper.

Let us define the following generalized functionals:

D : P (Rn)× P (Rn) → R+, D(A,B) = inf{d(a, b) | a ∈ A, b ∈ B}.
D is called the gap functional between A and B. In particular, if x0 ∈ X
then D(x0, B) := D({x0}, B).

ρ : P (Rn)× P (Rn) → R+ ∪ {+∞}, ρ(A,B) = sup{D(a,B) | a ∈ A}.
ρ is called the (generalized) excess functional.

H : P (Rn)× P (Rn) → R+ ∪ {+∞},H(A,B) = max{ρ(A,B), ρ(B,A)}.
H is the (generalized) Pompeiu-Hausdorff functional.

It is known that (Pcp,cv(Rn),H) is a complete metric space ([1]).

Lemma 2.1 ([6]). Let X be a Banach space. Then

H(A + C,B + D) ≤ H(A,B) + H(C,D), for A,B, C, D ∈ P (X).

Proof. Let ε > 0. From the definition of H it follows that there exists
(a + c) ∈ A + C such that D(a + c,B + D) ≥ H(A + C,B + D)− ε or exists
(b + d) ∈ B + D such that D(b + d, A + C) ≥ H(A + C,B + D)− ε.

Let us consider the first case. For a, c we get b ∈ B, d ∈ D such that:

‖a− b‖ ≤ H(A,B) +
ε

2
, ‖c− d‖ ≤ H(C,D) +

ε

2
.

Then H(A+C,B +D)−ε ≤ D(a+c,B +D) ≤ ‖(a+c)− (b+d)‖ we obtain
that H(A + C,B + D) − ε ≤ H(A,B) + H(C,D) + ε, proving the desired
inequality. �

3. Main results

We consider on C([a, b], Pcp,cv(Rn)) the metric:

H∗(X, Y ) := max
t∈[a,b]

H(X(t), Y (t)).

The pair (C([a, b], Pcp,cv(Rn)),H∗) forms a complete metric space.
Our first result is an existence and uniqueness theorem for the solution of

the equation (1).
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Theorem 3.1. Let K : [a, b] × [a, b] × Pcp,cv(Rn) → Pcp,cv(Rn) be a multi-
valued operator. Suppose that:

(i) K is continuous on [a, b]× [a, b]× Pcp,cv(Rn) and X0 ∈ Pcp,cv(Rn),
(ii) K(t, s, ·) is Lipschitz, i.e., there exists LK ≥ 0 such that:

H(K(t, s, A),K(t, s, B)) ≤ LKH(A,B),

for all A,B ∈ Pcp,cv(Rn) and for all t, s ∈ [a, b],
(iii) LK(b− a) < 1.

Then the set integral equation

(1) X(t) =
∫ b

a
K(t, s, X(s)) d s + X0

has a unique solution.

Proof. Consider the operator: Γ : Pcp,cv(Rn) → Pcp,cv(Rn) defined for each
t ∈ [a, b] by

ΓX(t) =
∫ b

a
K(t, s, X(s)) d s + X0.

We need to verify the contraction condition for Γ.

H
(
Γ(X)(t),Γ(Y )(t)

)
=

= H

(∫ b

a
K(t, s, X(s)) d s + X0,

∫ b

a
K(t, s, Y (s)) d s + X0

)
≤ H(X0, X0) + H

(∫ b

a
K(t, s, X(s)) d s,

∫ b

a
K(t, s, Y (s)) d s

)
≤

∫ b

a
H

(
K(t, s, X(s)),K(t, s, Y (s))

)
d s

≤
∫ b

a
LKH

(
X(s), Y (s)

)
d s.

Taking the maximum for t ∈ [a, b], then we have:

max
t∈[a,b]

H
(
Γ(X)(t),Γ(Y )(t)

)
≤ LK

∫ b

a
max
t∈[a,b]

H
(
X(s), Y (s)

)
d s

H∗
(
Γ(X),Γ(Y )

)
≤ LK(b− a)H∗(X, Y ),

for all t ∈ [a, b], and X, Y ∈ C
(
[a, b], Pcp,cv(Rn)

)
.

Thus, the integral operator Γ is Lipschitz with constant LΓ = LK(b−a) <
1. From the contraction principle we get the result. �

A data dependence result for the solution of equation (1) is:
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Theorem 3.2. Let K1,K2 : [a, b] × [a, b] × Pcp,cv(Rn) → Pcp,cv(Rn), be
continuous. Consider the following set equations:

X(t) =
∫ b

a
K1(t, s, X(s)) d s + X0(3)

Y (t) =
∫ b

a
K2(t, s, Y (s)) d s + Y0(4)

Suppose:

(i) there exists LK ≥ 0 such that H
(
K(t, s, A),K(t, s, B)

)
≤ LKH(A,B),

for all A,B ∈ Pcp,cv(Rn) and t, s ∈ [a, b], with LK(b−a) < 1 (denote
by X∗ the unique solution of the equation (3));

(ii) there exists η1, η2 > 0 such that:
(a) H

(
K1(t, s, U),K2(t, s, U)

)
≤ η1, for all (t, s, U) ∈ [a, b]×[a, b]×

Pcp,cv(Rn), and
(b) H(X0, Y0) ≤ η2;

(iii) there exists Y ∗ a solution of the equation (4).

Then

H∗(X∗, Y ∗) ≤ η2 + η1(b− a)
1− LK(b− a)

.

Proof. We have:

H(X∗(t), Y ∗(t)) =

= H

(∫ b

a
K1(t, s, X∗(s)) d s + X0,

∫ b

a
K2(t, s, Y ∗(s)) d s + Y0

)
≤ H

(∫ b

a
K1(t, s, X∗(s)) d s,

∫ b

a
K2(t, s, Y ∗(s)) d s

)
+ H(X0, Y0)

≤ H

(∫ b

a
K1(t, s, X∗(s)) d s,

∫ b

a
K1(t, s, Y ∗(s)) d s

)
+

+ H

(∫ b

a
K1(t, s, Y ∗(s)) d s,

∫ b

a
K2(t, s, Y ∗(s)) d s

)
+ η2

≤
∫ b

a
H

(
K1(t, s, X∗(s)),K1(t, s, Y ∗(s))

)
d s+

+
∫ b

a
H

(
K1(t, s, Y ∗(s)),K2(t, s, Y ∗(s))

)
d s + η2

≤
∫ b

a
H

(
K1(t, s, X∗(s)),K1(t, s, Y ∗(s))

)
d s +

∫ b

a
η1 d s + η2.
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By taking the maximum for t ∈ [a, b], then we have:

max
t∈[a,b]

H
(
X∗(t), Y ∗(t)

)
≤

max
t∈[a,b]

(
LK(b− a)H

(
X∗(t), Y ∗(t)

)
+ η1(b− a) + η2

)
≤LK(b− a) max

t∈[a,b]
H

(
X∗(t), Y ∗(t)

)
+ η1(b− a) + η2

max
t∈[a,b]

H
(
X∗(t), Y ∗(t)

)
≤ η2 + η1(b− a)

1− LK(b− a)

H∗(X∗, Y ∗) ≤ η2 + η1(b− a)
1− LK(b− a)

. �

We will prove now an existence result and a data dependence result for
the solution of the equation (2).

We consider on C
(
[a, b], Pcp,cv(Rn)

)
the metric:

HB
∗ (X, Y ) := max

t∈[a,b]
[H(X(t), Y (t))e−τ(t−a)], with arbitrary τ > 0.

The pair
(
C([a, b], Pcp,cv(Rn)),HB

∗
)

forms a complete metric space.

Theorem 3.3. Let K : [a, b]×[a, b]×Pcp,cv(Rn) → Pcp,cv(Rn) be an operator.
Suppose that:

(i) K is continuous on [a, b]× [a, b]× Pcp,cv(Rn) and X0 ∈ Pcp,cv(Rn),
(ii) K(t, s, ·) is Lipschitz, i.e., there exists LK ≥ 0 such that

H
(
K(t, s, A),K(t, s, B)

)
≤ LKH(A,B),

for all A,B ∈ Pcp,cv(Rn) and t, s ∈ [a, b].

Then the set integral equation

(2) X(t) =
∫ t

a
K(t, s, X(s)) d s + X0

has a unique solution.

Proof. Consider the operator Γ : Pcp,cv(Rn) → Pcp,cv(Rn) defined for each
t ∈ [a, b] by

ΓX(t) =
∫ t

a
K(t, s, X(s)) d s + X0.
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We will prove the contraction condition for Γ.

H
(
Γ(X)(t),Γ(Y )(t)

)
=

= H

(∫ t

a
K(t, s, X(s)) d s + X0,

∫ t

a
K(t, s, Y (s)) d s + X0

)
≤

≤ H(X0, X0) + H

(∫ t

a
K(t, s, X(s)) d s,

∫ t

a
K(t, s, Y (s)) d s

)
≤

≤
∫ t

a
H

(
K(t, s, X(s)),K(t, s, Y (s))

)
d s ≤

∫ t

a
LKH

(
X(s), Y (s)

)
d s =

= LK

∫ t

a
H

(
X(s), Y (s)

)
e−τ(s−a)eτ(s−a) d s ≤

≤ LKHB
∗ (X, Y )

∫ t

a
eτ(s−a) d s =

=
LK

τ
HB
∗ (X, Y )(eτ(t−a) − 1) ≤ LK

τ
HB
∗ (X, Y )eτ(t−a).

Then we have:

H
(
Γ(X)(t),Γ(Y )(t)

)
e−τ(t−a) ≤ LK

τ
HB
∗ (X, Y )

HB
∗

(
Γ(X),Γ(Y )

)
≤ LK

τ
HB
∗ (X, Y ),

for all t ∈ [a, b], X, Y ∈ C
(
[a, b], Pcp,cv(Rn)

)
, τ > 0.

Hence, we can apply the Banach contraction principle for Γ, since by
choosing τ > LK , we get LΓ := LK

τ < 1. By the contraction principle, the
proof is complete. �

Remark 3.1. Theorem 3.3 in this paper is a special case of Hammerstein’s
equality. General solution of this equality is given in [7].

A data dependence result is:

Theorem 3.4. Let K1,K2 : [a, b]× [a, b]× Pcp,cv(Rn) → Pcp,cv(Rn) be con-
tinuous. Consider the following set equations:

X(t) =
∫ t

a
K1(t, s, X(s)) d s + X0(5)

Y (t) =
∫ t

a
K2(t, s, Y (s)) d s + Y0(6)

Suppose:
(i) H

(
K(t, s, A),K(t, s, B)

)
≤ LKH(A,B), for all A,B ∈ Pcp,cv(Rn)

and t, s ∈ [a, b], where LK ≥ 0 (denote by X∗ the unique solution of
the equation (5));

(ii) there exists η1, η2 > 0, such that H
(
K1(t, s, U),K2(t, s, U)

)
≤ η1,

for all (t, s, U) ∈ [a, b]× [a, b]× Pcp,cv(Rn) and H(X0, Y0) ≤ η2;
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(iii) There exists Y ∗ a solution of the equation (6).
Then

HB
∗ (X∗, Y ∗) ≤ η2 + η1(b− a)

1− LK
τ

e−τ(b−a)( where τ > LK).

Proof. We have:

H(X∗(t), Y ∗(t)) =

= H

(∫ t

a
K1(t, s, X∗(s)) d s + X0,

∫ t

a
K2

(
t, s, Y ∗(s)

)
d s + Y0

)
≤ H

(∫ t

a
K1

(
t, s, X∗(s)

)
d s,

∫ t

a
K2

(
t, s, Y ∗(s)

)
d s

)
+ H(X0, Y0)

≤ H

(∫ t

a
K1

(
t, s, X∗(s)

)
d s,

∫ t

a
K1

(
t, s, Y ∗(s)

)
d s

)
+

+ H

(∫ t

a
K1

(
t, s, Y ∗(s)

)
d s,

∫ t

a
K2

(
t, s, Y ∗(s)

)
d s

)
+ η2

≤
∫ t

a
H

(
K1(t, s, X∗(s)),K1(t, s, Y ∗(s))

)
d s+

+
∫ t

a
H

(
K1(t, s, Y ∗(s)),K2(t, s, Y ∗(s))

)
d s + η2

≤
∫ t

a
H

(
K1(t, s, X∗(s)),K1(t, s, Y ∗(s))

)
d s +

∫ t

a
η1 d s + η2

≤
∫ t

a
LKH

(
X∗(s), Y ∗(s)

)
e−τ(s−a)eτ(s−a) d s +

∫ t

a
η1 d s + η2.

By taking the maximum for t ∈ [a, b], we have:

max
t∈[a,b]

(
H

(
X∗(t), Y ∗(t)

)
e−τ(t−a)eτ(t−a)

)
≤

≤ max
t∈[a,b]

(∫ t

a
LKH

(
X∗(s), Y ∗(s)

)
e−τ(s−a)eτ(s−a)ds +

∫ t

a
η1 d s + η2

)
,

HB
∗ (X∗, Y ∗)eτ(b−a) = LKHB

∗ (X∗, Y ∗)
∫ t

a
eτ(s−a) d s + η1(b− a) + η2 =

LK

τ
HB
∗ (X∗, Y ∗)(eτ(t−a) − 1) + η1(b− a) + η2

≤ LK

τ
HB
∗ (X∗, Y ∗)eτ(b−a) + η1(b− a) + η2,

HB
∗ (X∗, Y ∗) ≤ η2 + η1(b− a)

1− LK
τ

e−τ(b−a).
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For τ > LK , we have

HB
∗ (X∗, Y ∗) ≤ η2 + η1(b− a)

1− LK
τ

e−τ(b−a). �
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